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Examinees and other test users often expect to receive subscores in addition to total test scores 

(Huff & Goodman, 2007). However, subscores have their limitations: often they are not empirically 

distinct from one another, and they tend to lack sufficient reliability to be of practical use. Indeed, the 

Standards for Educational and Psychological Testing (AERA et al., 2014) indicate that if interpretation 

of subscores, score differences, or profiles is suggested, then a rationale and relevant evidence in support 

of such interpretations should be provided (p. 27).   

Various methods have been proposed for evaluating the usefulness of subscores, including visual 

inspection of correlations among subscores, factor analysis, and structural equation modeling (e.g., 

D’Agostino, Karpinski, & Welsh, 2011; Haladyna & Kramer, 2004; Stone, Ye, Zhu & Lane, 2010; 

Thissen, Wainer, & Wang, 1994). While these methods provide useful information, using the results to 

make decisions about subscore reporting involves an element of subjectivity. A method developed by 

Haberman (2008) removes the subjectivity. His approach incorporates both subscore distinctiveness and 

subscore reliability into a single objective decision rule. Brennan (2011), as well as Fienberg and Wainer 

(2014), have derived variations on Haberman’s (2008) approach. Each  of these methods is based on the 

principle that an observed subscore, V, is meaningful only if it can predict the true subscore, VT, more 

accurately than the true subscore can be predicted from the total score Z. With Haberman’s method, VT  is 

estimated using Kelley’s equation for regressing observed scores toward the group mean, and where 

predictive accuracy is expressed as mean-squared error. If the proportion reduction in mean-square-error 

(PRMSE) based on the prediction of a VT from V exceeds the PRMSE based on the total score Z, then the 

subscore adds value. In other words, subscores are useful only if observed subscores predict true 

subscores more accurately than total scores predict true subscores.  

A consistent finding from numerous studies using PRMSE and other correlation-based methods is 

that subscores are seldom worth reporting (Puhan, Sinharay, Haberman, & Larkin, 2008; Sinharay, 2010; 

2013; Stone et al., 2012). Although well-constructed test batteries used for selection and admissions can 

produce useful subscores for their major sections (e.g., reading, math), the subscores reported within the 

major sections of most tests often lack empirical support (Haberman et al., 2008; Harris & Hanson, 1991).  

Studies also have shown that, with a few exceptions, these conclusions are usually invariant with respect 

to subgroups based on gender, ethnicity, or other factors (Sinharay & Haberman, 2014). That is, empirical 
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findings suggest that if subscores are not useful for the total group, then they probably will not be useful 

for subgroups. 

Although correlational methods are useful for summarizing relationships among variables, they 

have certain limitations. First, correlations overlook differences in means and variances across variables, 

and these sources of variation can be important when interpreting score profiles (Cronbach & Gleser, 

1953).  A second limitation is that correlations are relatively insensitive to substantial changes in score 

profiles subgroups of examinees. Consider, for example, two subscores, X and Y, with equal means (MX = 

MY = 0, and a correlation, rxy = .90.  Assume that one-half of examinees are exposed to an intervention 

that results in a score increase of 0.50 SD to the scores on Y. The new correlation for the total group 

would be rxy= .873.  That is, the change in correlation by adding one-half SD to half of the scores is only 

.027.  Of course, the subgroup correlations remain at rxy = .90, a consequence of adding a constant to all 

scores in the subgroup getting the intervention.
1
 Although this example is contrived (an intervention never 

results in a constant effect), the empirical outcome is not: correlations are not sensitive to large systematic 

differences in subtest score distributions.  There is at least one real-world counterpart to this example 

involving gender differences on essay tests. It is a general finding that females score higher than males on 

essay questions and lower on multiple-choice questions. However, correlations suggest that essay scores 

should not be separately reported (e.g., Thissen et al, 1994; Bridgeman and Lewis, 1994). Bridgeman and 

Lewis (1994) noted that exclusive reliance on correlations in this instance results in overlooking 

potentially important performance differences between men and women. It would seem that an evaluation 

of the utility of subscores would also consider the variability of subgroup score profiles. 

An Index for the Reliability of Score Profiles 

Cronbach and colleagues (Cronbach, Gleser, Nanda, & Rajaratnam, 1972) laid a foundation for 

quantifying the properties of score profiles toward the end of the classic book, The dependability of 

behavioral measurements: Theory of generalizability for scores and profiles. Building on that foundation, 

Brennan (2001) introduced a reliability-like index for score profiles as part of his treatment of 

multivariate generalizability theory (G-theory). Brennan’s index for score profile reliability, 𝒢, indicates 

the proportion of variance in observed score profile variance attributable to universe (or true) score profile 

variance (Brennan, 2001, p. 323). Notably, 𝒢 accounts for mean differences in score profiles.  

The G-theory design most relevant to the study of subscores involves a different set of items (i) 

being assigned to each of several subtest (v), and all persons (p) respond to all items within each subtest. 

The univariate designation for this design is persons crossed with items nested within subtests, or  p x 

(i:v) . The multivariate designation of this design is p• x i°, where the circles describe the multivariate 

                                                      
1
 This example is based on a sample of 100,000 simulated examinees. A similar effect is observed for correlations in 

the .70 to .90 range and with smaller samples of examinees.  
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design. In this instance, there is a random effects p x i design for each level of some fixed facet.  The solid 

circle indicates that every level of the person facet is linked to each level of the multivariate facet (i.e., 

with each subtest), while the open circle indicates that items are not linked across the different subtests 

(i.e., each subtest consists of a unique set of items.  For purpose of comparison, the p• x i• design, where 

both circles are solid, indicates that items are also linked.  One example would be when examinees to 

each of several essays are rated on different attributes (e.g., grammar, organization).  The p• x i• design 

can account for correlated error, while the p• x i° does not.    

A multivariate G study based on the p• x i° design produces matrices of variance-covariance 

components for persons, items, and error, designated as  Σp , Σi and Σδ . Also of interest is S, the observed 

variance-covariance matrix.  S is equal to the sum of the variance-covariance component matrices Σp and 

Σδ ; alternatively, it can be computed directly from observed scores.  Brennan (2001) defines the 

generalizability index for score profiles as:  

 𝒢 =
𝒱(𝜇𝑝)

𝒱(𝑋𝑝)
 =  

[𝜎𝑣
2̅̅ ̅̅ (𝑝)− 𝜎𝑣𝑣′̅̅ ̅̅ ̅̅ (𝑝)]+𝑣𝑎𝑟(𝜇𝑣)

[𝑆𝑣
2̅̅̅̅ (𝑝)− 𝑆𝑣𝑣′̅̅ ̅̅ ̅̅ (𝑝)]+𝑣𝑎𝑟(𝑋𝑣)

 (1) 

where 𝒱(𝜇𝑝) is the average variance of universe score profiles and 𝒱(�̅�𝑝) corresponds to the average 

variance for observed score profiles. 𝒢 ranges from 0 to 1 and can be interpreted as a reliability-like index 

for score profiles. The terms in numerator are:   

 𝜎𝑣
2̅̅̅̅ (𝑝)  = mean of the universe score variances for nv subtests, given by the diagonal elements 

in Σp;  

 𝜎𝑣𝑣′̅̅ ̅̅ ̅(𝑝)   = mean of the all nv elements in Σp ; and  

 𝑣𝑎𝑟(𝜇𝑣) = variance of the subscore means, which is estimated by 𝑣𝑎𝑟(𝑋𝑣).  

Meanwhile, the denominator is defined as:  

 𝑆𝑣
2̅̅ ̅(𝑝)  = mean of the observed score variances obtained from the diagonal elements in S; 

 𝑆𝑣𝑣′
̅̅ ̅̅ ̅(𝑝)   = mean of the all nv elements in S .    

 𝑣𝑎𝑟(𝑋𝑣) = variance of the subscore means.  

 

One convenience is that 𝑣𝑎𝑟(𝑋𝑣) provides an estimate of  𝑣𝑎𝑟(𝜇𝑣). Another is that for the p• x i° 

design, the covariance components for observed scores provides an unbiased estimate of covariance 

components for universe scores. That is,  𝜎𝑣𝑣′ =  𝑆𝑣𝑣′.  The first term in both the numerator and the 

denominator, if considered alone, represents the ratio of true score variance to observed variance. Thus, it 

is apparent that 𝒢 is essentially a reliability coefficient adjusted for covariances. As subscore correlations 

approach 1, the difference between 𝜎𝑣
2̅̅̅̅ (𝑝) and 𝜎𝑣𝑣′̅̅ ̅̅ ̅(𝑝) approaches 0, as does the difference between 

𝑆𝑣
2̅̅ ̅(𝑝) and  𝑆𝑣𝑣′

̅̅ ̅̅ ̅(𝑝); in both instances an increase in subtest correlations decreases 𝒢. It also is evident that 
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differences in subtest difficulty contribute to 𝒢.  If subscores all have the same mean for one group but 

different means for a second group, then 𝒢 will be higher for the latter group all other things being equal.  

To date, little research has been done on the potential use of G-Theory to evaluate the quality of 

subscores. One exploratory study reported that while 𝒢 has moderately related to PRMSE, there were 

instances where PRMSE indicated that subscores are worth reporting, but 𝒢 indices were in the 60s and 

70s (Jiang & Raymond, 2017). In other instances, 𝒢 indices were in the .80s, but PRMSE indicated that 

subscores did not add value. The most notable outcome was that differences in subtest means contributed 

substantially to 𝒢, suggesting that it might be detect subscore differences in the utility of score profiles for 

different subgroups even in instances where subgroup correlations are similar and high.  

The purpose of the present study is to evaluate sensitivity of 𝒢 to differences in score profiles for 

subgroups of examinees. To provide a context for interpreting 𝒢, we compare it to PRMSE.  We simulate 

data for the two subtest case to facilitate that comparison. Since PRMSE evaluates each variable and 𝒢 

evaluates the entire score profile, the two become more difficult to compare for more than two subtests. 

Also, the two subtest case corresponds to a common data interpretation challenge in testing: whether to 

report subscores when a test consists of both standard multiple-choice questions (MCQs) and some other 

format such as constructed response science items or essays (Bridgeman & Lewis, 1994; Bridgeman, 

2016).  

We conduct a simulation study to evaluate the properties of  𝒢 over various conditions. For each 

condition, there was a reference group whose score profile was flat, and a lower performing focal group 

whose score profile varied. Because PRMSE is generally known, we use it as a basis for comparison – not 

so much for determining superiority but as a means for understanding the properties of 𝒢 and when it 

might be useful. The study addresses the following questions: (1) To what extent are 𝒢 and VAR 

differentially sensitive to differences in subtest means for subgroups of examinees? (2) To what extent do 

those differences vary by subtest reliabilities and correlations?  (3) What conditions lead to different 

decisions for 𝒢 and PRMSE?    

Method 

Overview  

We conduct a series of simulations to evaluate the properties of  𝒢 and PRMSE over various 

conditions of total test and subtest reliability, subtest correlations, and variation in subtest means. For 

each condition, there was a reference group whose score profiles were flat, and a lower performing focal 

group whose score profiles varied. The first two factors (reliability, correlations) have been studied in 

prior simulations of subscore utility, while the last (variation in means) has not. Total test and subtest 

reliability were controlled as a single unit because of their obvious dependence.  

Independent Variables   
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We simulate item responses for two groups of examinees: a reference group, and a lower 

performing focal group. Within each group the three factors are investigated:  

 Population correlation, 𝜌𝑣𝑣′, between subtests. Three levels were studied, with values of  𝜌𝑣𝑣′ = 

.73, .81, and .90. These values are comparable to the subtest correlations often seen in the 

literature (e.g., Sinharay, 2010; Sinharay & Haberman, 2014).   

 Subtest reliability, 𝜌𝑣
2. Three conditions were studied, designated as high (𝜌𝑣

2= .89), moderate  

(𝜌𝑣
2= .83), and low (𝜌𝑣

2= .71). The two subtests were fixed to have equal levels of reliability.  

Note that total test reliability naturally covaried with subtest reliability (.94, .90, and .82). 

However total test reliability has no direct effect on 𝒢 and, while useful to keep in mind, is of 

little consequence for this study.  

 Difference in population subtest means, Δμ, for the focal group: Four levels of Δμ were 

controlled to be 0.00,  0.25,  0.50, and 0.75.  Figure 1 depicts the simulated means for the two 

subtests at the four levels of Δμ. These differences are comparable to some of the values reported 

in practice (e.g., Bridgeman & Lewis, 1994; Sinharay & Haberman, 2014), although ΔM = 0.75 

is on the high side. The reference groups always had no variation in means (μ = 1.0 for both 

subtests in all conditions). The overall difference in means between the reference and focal 

groups is of no consequence as both 𝒢 and PRMSE were computed within groups.  

Experimental conditions were created by crossing these three factors within the reference group and  

focal group. Thus, there were 72 total conditions, 36 within each group. The number of subtests was fixed 

at two for the previously noted reasons and because other studies of subscore utility suggest that results 

generalize from the two subtest case to multiple subtests (Feinberg & Wainer, 2014; Jiang & Raymond, 

2017). We set sample size at n = 1000 per group. Sample size was not manipulated because previous 

simulations on the utility of subscores indicate that when samples sizes are reasonably large it has little 

impact on results.  

Item Response Simulation  

Subscores for simulated examinees were generated using a two-parameter, logistic 

multidimensional item response theory (MIRT) model (Reckase, 2007; Haberman, von Davier, & Lee, 

2008).  Let 𝜽 = (𝜃1, 𝜃2 … 𝜃𝑘) correspond to the K-dimensional true ability parameter vector of an 

examinee. The probability of a correct response P to item i from an examinee can be expressed as 

 

exp(𝑎1𝑖𝜃1 + 𝑎2𝑖𝜃2 + ⋯ + 𝑎𝑘𝑖𝜃𝑘 − 𝑏𝑖)

1 + exp(𝑎1𝑖𝜃1 + 𝑎2𝑖𝜃2 + ⋯ + 𝑎𝑘𝑖𝜃𝑘 − 𝑏𝑖)
 

 



AERA 2017  Multivariate G-Theory and Subgroup Score Profiles, 6 

where 𝑏𝑖is a scalar difficulty parameter and 𝒂𝒊 = (𝑎1𝑖, 𝑎2𝑖, … , 𝑎𝑘𝑖) is a vector of discrimination 

parameters of the item i. Each element in 𝜽 can be regarded as a subtest in the current context, and 𝜃𝑘 is 

an examinee’s score for subtest k. Item responses were generated by comparing P with a random draw u 

from a uniform distribution ranging from 0 to 1. If  P  ≥ u then the response 𝑥𝑖 at item i is 1; otherwise if 

P  < u, response 𝑥𝑖 = 0.  

Item discrimination parameters were generated from a log-normal distribution (M = 0.0, SD = 0.5), 

while difficulty parameters were normally distributed (M = 0, SD = 1).  True ability parameters for 

examinees were assumed to follow a multivariate normal distribution whose mean vector is 𝝁 and 

covariance matrix is 𝚺𝒑, where both 𝝁 and 𝚺𝑝 contained only two elements. Four mean vectors of ability 

parameters 𝝁 were specified for the focal group to produce to the values of Δμ described above and as 

presented in Figure 1. The diagonal elements of  𝚺𝑝 were constrained to be 1 (i.e., correlation matrix). 

The off-diagonal value is designated as  𝜌𝑣𝑣′ and was assigned values of .73, .81, and .90.  

Outcome Variables   

The two outcomes of interest are 𝒢 and proportion reduction in mean-squared error (PRMSE) 

(Haberman, 2008).  The goal is not so much to compare the merits of 𝒢 to those of PRMSE, but rather to 

use the latter  as a baseline for comparison and interpretation of 𝒢, since the measurement community has 

experience with PRMSE. Brennan’s (2001) 𝒢 was computed according to equations (1) through (3).  

PRMSE for total test scores and subtest scores was computed according to the method described by 

Haberman (2008). We also followed the suggestion of Feinberg and Wainer (2014), and computed a 

value added ratio (VAR) from the two PRMSE values such that if VAR > 1, then subscores add value and 

are worth reporting for that particular replication. Both 𝒢 and VAR were computed for each replication.  

For each of the 36 conditions within each group (focal, reference), we report the mean 𝒢 across the 200 

replications. As VAR is a dichotomous decision (0, 1), we report the proportion of the 200 replications 

for which VAR ≥1.   

Results 

Figure 2 summarizes results for 𝒢 on the left and VAR on the right.  Vertically, each panel 

corresponds to a different level of subtest reliability (low = .71, moderate = .83, high = .89), while the 

lines within panels indicate the three levels of subtest correlation (𝜌𝑣𝑣′= .73, .81, .90).  Keep in mind that 

the reference group always had Δμ = 0, thus the x-axis displays only one level for the focus group. We 

first consider results for 𝒢 and VAR separately, and then discuss the two indices together.   

Across all conditions, 𝒢 ranged from .27 to .82, with an overall mean of .53. However, values of 𝒢 

for the reference group were consistently lower than for the focal group (mean 𝒢 = .48 and .58, 

respectively. Within any single panel in the left portion of Figure 2, 𝒢 increased as the subtest correlations 
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dropped and as variation in subtest means increased. Looking down across the panels, it can be seen that 

𝒢 declines with lower levels of subtest reliability. Overall, the values of 𝒢 generally are quite modest, 

even for conditions where one might expect it to be high. For example, under the conditions most 

favorable to subscores (panel A, top line), 𝒢 = .70 for the reference group and ranged from .72 to .82 for 

the focal group.  Under the least favorable conditions (panel C, bottom line), 𝒢 = .28 for the reference 

group and ranged from only .29 to .52 for the focal group. In all conditions where focal group score 

profiles were not flat (i.e., Δμ > 0), their 𝒢 index was higher than for the reference group.  

The panels on the right side of Figure 2 show the proportion of times VAR was greater than 1.0 for 

each condition. When interpreting VAR for a single replication, a value of 1.0 is required to conclude that 

subscores are worth reporting. However, when aggregating VAR indices across multiple replications for a 

particular condition, a overall threshold of .50 is reasonable, because VAR would exceed 1.0 more often 

than not.  

The mean VAR across all conditions and all three panels was .48. As Figure 1 implies, the 

distribution of VAR was bimodal: for about half the conditions, subscores were worth reporting, and for 

half they were not. Results indicate that subscores are usually worth reporting for moderate to high levels 

of reliability (𝜌𝑣
2 = .83, .89), and when subtest correlations are not excessively high (𝜌𝑣𝑣′ =.73, .81). These 

findings are not unlike those reported by Sinharay (2010). Notably, the decision of whether to report 

subscores based on VAR was usually the same for the reference group and focal group. The exception is 

for the conditions represented in the center panel where 𝜌𝑣
2= .83 and 𝜌𝑣𝑣′=.81; in this condition VAR 

exhibited some sensitivity to the differences in the focal group.   

Although 𝒢 and VAR clearly differ, Figure 2 suggests that they covary. To clarify their 

relationship, Figure 3 presents a scatterplot between 𝒢 and VAR. The open circles correspond to the 

reference group, while the triangles correspond to the focal group. One notable observation is that for all 

conditions where Δμ = 0, VAR indicates that subscores are worth reporting for all values of 𝒢 that exceed 

.60. That is, some relatively unreliable score profiles were deemed worth reporting according to VAR. A 

second observation is that for all conditions where Δμ = 0, which includes all 36 reference group 

conditions (open circles) and 9 focal group conditions (inverted triangles), the relationship between the 

VAR and 𝒢 follows a fairly tight S function. By replacing a few zeros for VAR with near-zero values, a 

logistic model with R
2
 = .95 could be fit.  However, for focal group conditions where Δμ > 0 (upright 

triangles), 𝒢 increases relative to VAR and the two indices diverge from the logistic function. In these 

instances 𝒢 looks better than what one might expect based on VAR. The largest outlier occurred for the 

condition where 𝜌𝑣
2= .89, 𝜌𝑣𝑣′=.90, and Δμ = .75; at the condition VAR =.44 while 𝒢 =.72.  

Differences between VAR and 𝒢 can be further illustrated by referring to Figure 2.  Assume for the 

moment that a threshold of 𝒢 > .70 has been established to allow subscores to be reported. Now consider 
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the top-right and top-left panels where subtests are very reliable (𝜌𝑣
2 = .89) and the two lines where 

subtest correlations are not excessively high (𝜌𝑣𝑣′ =.73, .81).  VAR deems subscores to be worth reporting 

for all conditions for both the reference group and the focal group; in other words, VAR is invariant with 

respect to group membership for these conditions.  However, 𝒢 paints a different landscape. Under the 

decision rule adopted above (𝒢 = .70), one would conclude that subscores for the reference group are not 

worth reporting; however, subscores for the focal group would be reported for six of eight conditions. 

Lowering the threshold to  𝒢 = .65 slightly improves agreement with VAR. It would allow subscores for 

the reference group at 𝜌𝑣𝑣′ =.73, but not at 𝜌𝑣𝑣′= .81. Meanwhile, subscores for the focal group would be 

judged as reportable for all of the conditions being discussed if the threshold were set at .65.  In short, 

VAR appears to be tolerant of score profiles for which the proportion of true score variance as captured in 

𝒢 is less than optimal.  

Discussion 

Previous work evaluating the utility of score profiles for subgroups of examinees has relied almost 

exclusively on subgroup correlations and reliability coefficients as the basis for evaluation, even though 

subgroups may have score profiles that exhibit considerable variability  in subtest means (see Sinharay & 

Haberman, 2014 for examples). The present study examined the sensitivity to subgroup differences of 

Brennan’s (2001) 𝒢, a reliability-like index suitable for score profiles. Given that the equation for 𝒢 

includes terms not only for reliability and correlations, but also for subscore means, it seems particularly 

appropriate for circumstances where score profiles for one or more subgroups of examinees are not flat. 

The simulations reported here produced several findings that shed light on the potential utility of 𝒢. As 

expected, 𝒢 increased with higher levels of subtest reliability, greater differences in subtest means, and 

lower levels of subtest correlation. However, values of 𝒢 seemed almost surprisingly low, seldom 

reaching what one might regard as acceptable levels of reliability. Only under the most favorable 

conditions did 𝒢 approach or exceed .80; while under more common conditions it fell into the .40s, .50s 

and .60s. These particular findings are consistent with those reported in an earlier study (Jiang and 

Raymond, 2017). The result of primary interest for this study pertains to subgroup differences, where  𝒢 

was found to be sensitive to group differences in subscore means. More specifically, 𝒢 was consistently 

higher for the focal group where subtest means varied, than for the reference group where subtest means 

were equal.   

The data also indicated that VAR and 𝒢 are closely related under certain conditions. For those 

instances where subscore profiles for the reference group and focal group were flat, the relationship 

between VAR and 𝒢 could be accurately modeled by a logistic function (R
2
 = .95). However, as score 

profiles varied, 𝒢 increased and the logistic function no longer described its relationship with VAR. As 

indicated in Figure 3, subscores with 𝒢 coefficients as low as the .60s were deemed by VAR as 
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reportable. This result is a little concerning because it indicates that VAR can be quite tolerant of score 

profiles with a fair amount of measurement error. In other words, subscores deemed worthy of reporting 

according to VAR may not meet generally acceptable levels of profile reliability. Under conditions for 

which subtest means are equal,  𝒢 may be seen as more conservative than VAR.   

In conclusion, the findings indicate that 𝒢 is a useful adjunct to PRMSE or VAR for evaluating 

subscore utility. There were instances for which 𝒢 was more sensitive to group differences on subtests, 

which can be important to consider when deciding to report subscores where different subgroups may 

have different mean score profiles (e.g., women scoring better on essay-based subtests; students receiving 

different interventions). Further study of 𝒢 seems warranted for a few reasons. First, this study was 

modest in size and scope; its limitations should be addressed in future investigations. For example, it 

would be important to extend the conditions studied here (different levels of  𝜌𝑣
2 , 𝜌𝑣𝑣′, and Δμ), and to 

manipulate other conditions (e.g., sample size, percent of sample in focal group). Second, the present 

study used VAR > 1.0 as a dichotomous outcome (report subscores or not), which is consistent with best 

practices. However, future efforts should just look at the mean levels of VAR to better understand its 

relationship with 𝒢.  Finally, the measurement community would benefit from guidelines on how to 

interpret 𝒢. While 𝒢 indices in the .70s certainly seem low, further study could suggest otherwise… or 

not. Guidelines for interpretation typically evolve over time as researchers gain experience with a 

procedure. It is hoped that this initial effort encourages further research into the properties of 𝒢.  
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Figure 1.  Subtest population means, and differences in subtest means (Δμ), for reference 

and focal groups for simulated data. 
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Figure 2: Mean 𝒢  and proportion VAR as a function of differences in subtest means for the focal group. There 

are three levels of subtest reliability (𝜌𝑣
2= .71, .83, .89) presented in the three vertical panels, and three 

levels of true score correlation (𝜌𝑣𝑣′= .73, .81, .90) represented by the three lines. Note that the reference 

subtest means were always equal (Δμ = 0.00).    
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Figure 3.  Relationship between proportion VAR and mean 𝒢 for all experimental conditions. Open circles 

indicate the reference group (Δμ = 0); inverted triangles indicate the focal group where Δμ = 0; while the upright 

triangles indicate the focal group where Δμ > 0. If data points where Δμ > 0 are excluded, the relationship 

between mean 𝒢 and Proportion VAR can be modeled with a logistic function (R
2
 = .95).  

 

 

 
 

 

 

 


